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ABSTRACT
In this paper we present the formulation and results of two-
wave interactions in a spatially developing shear layer, directed
at understanding and interpreting the physical mechanisms that
underlie the results of quantitative observation. Our study

confirms the existence of Kelly's mechanism that augments the

growth of-a subharmonic disturbance by extracting energy from its

fundamental or vice versa. This mechanism is shown to be

strongest in the region where the fundamental begins to return
energy to the mean flow and the two wave modes are of comparablg
energy levels. It is found that the initial conditions and
especially the initial phase angle between the two disturbances
play a very significant role in the modal development and that of
the shear layer itself. A doubling of the mean flow is shown to
take place; the two successive plateaus in its growth are

attributed to the peaking of the fundamental and subharmonic

amplitudes.
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1. INTRODUCTION

Sato (1959) appears to have been the first to observe what
was then a rather curious development of a subharmoniec
disturbance in the transition region of a separated plane shear
layer. This is subsequently brought to light further by the
experiments of Wille (1963), Freymuth (1966), Browand (1966),
Miksad (1972, 1973), Winant and Browand (1974) and more recently
Ho and Huang (1982), A theoretical explanation of conditions
favorable for the subharmonic development in free shear layers
was given by Kelly (1967). These conditions include a finite
threshold for the fundamental disturbance and more importantly,
Kelly's (1967) work implies that a "favorable" phase relation
must exist between the fundamental and its subharmonie. Although
Kelly's mechanism was arrived via weak nonlinear arguments that
necessarily involve small amplification rates, the basic physical
consequences, rather than the details, have much more
universality than the original framework (Liu 1981). On the
other Rand, for real developing shear layers the disturbance
growth rates are anything but small in the incipienﬁ transition
region as experiments indicate (see, for instance, Ho and Huang
1982).

Quantitative measurements of the disturbance amplitudes
indicate that the subharmoniec, at half the frequency of the
fundamental, peaks further downstream than the fundamental in a
spatially developing shear layer (Ho and Huang 1982). Each
individual component, in fact, undergoes a life cycle of

amplification and decay. Although the peaks in amplitude do not



overlap, there is a significant spatial, finite-amplitude region
of overlap between the fundamental mode and its subharmonie. The
switching in modal content of the disturbances is revealed by the
quantitative amplitude measurements (Ho and Huang 1982) to be a
gradual process rather than an abrupt one as might have been
suggested by visual observations of dye streaks alone. Of
course, wWwe were already cautioned by the work of Williams and
Hama.(1980). They showed that a linear superposition of constant
amplitude fundamental and subharmonic wave functions in a shear
layer could produce interference effects that lead to dye streak
accumulation suggesting the switceh in modal content, when in
fact, each of the wave components are quite distinct.

In this paper we shall present the formulation and results
for mode interactions in a spatially developing shear layer,
directed at understanding and interpreting the physical
mechanisms that underlie the results of quantitative
observations. The basic framework in this consideration is an
explicitaccount of the energy budget of each individual
disturbance component as well as that of the mean flgw
(Nikitopoulos 1982, Liu and Nikitopoulos 1982). This
necessitates the accounting of the rate of energy exchange
between the various scales of motion. While the rate of energy
exchange between each disturbance mode and the mean flow is
fairly well understood (the "production" mechanism), the rate of
energy éxchange between modes might still be somewhat novel.
Although directed at first towards the understanding of the

interaction between the fundamental and its harmonic but which is




also appropriate for the subharmonic problem, Stuart (1962) split
the flow quantity for an ensemble of disturbances into odd and

even modes. The rate of energy transfer from the even to the odd

| | "
modes is then uiujaui/axj, where ()' denotes odd and ()" denotes

even modes and the average is taken over the largest periodicity
of the disturbances. This is interpreted as the work done by the
stresses of the odd modes against the rates of strain of the even
modes. The mechanism that we attribute to Kelly (1967) is clear
from the present energy transfer consideration in that the phase
relation between the stresses of the odd modes and the
appropriate rates of strain of the even modes determines the
direction of energy transfer and that the mode amplitudes
determine the strength of this transfer. However, for a real
laboratory shear layer, the fundamental component is one which
has the largest initial amplification rate resulting in rather
strong interactions with the mean motion. The subharmonic
component evolves into a similar situation in a spatial region
for which its local amplification rate also reaches a "momentary"
maximum. These interactions with the mean flow scaie with an
amplitude to the second power via the Reynolds stresses, whereas
the mode interactions would scale as a typical amplitude to the
third power from the above discussion of the rate of energy
transfer. Thus, in a developing shear layer, the individual
modal production rate from the mean flow is anticipated to be the
dominant mechanism for diéturbance evolution. In this case, the
dominant mode interactions would be the implicit nonlinear

interactions via the mean flow rather than by the more explicit



direct energy transfer between the modes. The latter mechanism
is, however, most important in affecting the details of the
spatial distribution of the amplitudes.
2. CONSERVATION EQUATIONS

In a laboratory observations of the transition region in
shear layers there usually exist modes other than the fundamental
and the subharmonic including perhaps initially weak fine-grained
turbulence. The latter coexisting with monochromatic coherent
disturbances, has been the subject of discussion elsewhere (see,
for instance, Liu 1981) and will be excluded from consideration
here. We shall concentrate on the understanding of coherent mode
interactions in an otherwise laminar viscous shear flow. We
shall start from the Navier-Stokes equations for an
incompressible fluid and split the total flow quantity into that
for the mean motion Q and the overall disturbance a consisting of
{(q' + q"), where q' denotes the odd mode and q" denotes the even
mode (Stuart 1962). The mean flow momentum and continuity
equati%h?iare obtained following this Reynolds' splitting and

averaging,

DU, 3u.u.) 9P 1 3%,
1=_ lJ_ 1

Dt 9X, X, * Re 9x,09x. (2.1)
J 1 10

rral Y ‘ (2.2)




whére appropriate (constant) length and velocity scales are used ‘!

to make the equations dimensionless, Ui and P are the mean flow

velocity and pressure respectively, ui the total disturbance
velocity, X4 the spatial coordinates, t the time and Re the
Reynolds number. The bar over the substantial derivative
indicates that the derivative is taken following the mean flow.

The corresponding total disturbance momentum and continuity

equations are

Bui ~ 3y apP 1 32ui B(uiuj—uiuj)
bt Y5 ax. T T . * Re 3x.3x. ox . (2.3)
J i 1] J
aui
- 0 (2.4)
J

where p is the total disturbance pressure. Equations (2.1) -~
(2.4) are identical in form to the Reynolds system. Following

Stuart (1962), the total disturbance is split into the odd and

even modes, u; = u + ug . The linear terms in (2-3) and (2-%4)

1
i
are correspondingly split and would retain their respective

interpretations in the individual conservations for the odd and

~

-~

even modes. The nonlinear effect, through a(uiuj - uiuj)/ax. ’

deserves further comment. The results from the mode splitting
give rise to the nonlinear term a(u3ug + uﬂu{)/ax. for the odd-
mode momentum equation, with E?Gg = 0. The even-mode momentum

equation would obtain the even contributions from

1930 —~ 31171 . d 3 "o - _T_T—".T . ,
S(Uiuj uiuj)axJ an (uluJ uluJ)/ax. However, the mean



kinetic énergy equations for the odd and even modes would be

coupled through the mode interaction mechanism u{ujau;/axj as
follows.
For purposes of obtaining the "amplitude™ equations at a

later stage, we first obtain the energy equations for the various

scales of motion as follows:

Mean motion

D U? 3Ui 1 BUi 2
— =) = - T Y I —_) o~ e [
5t (7 (ujuj = ujul) (3xj) Re (axj]
- (production) dissipation
2

3 1 3 Ui A
* 5 s 3 (57) - PUy - v e - uE ]

J
"diffusion"
(2.5)
0dd modes
D uf U, uf 1 Bu! 2
_— ) = -1ty —— - | R . R,
Dt ( 2 ) ( uiuj) ij uiuj axj Re [axj ]
production ( mode )dissipation
interaction
d 1 3 u!2 uiz (2.6)
1 . . 2
+ —— —_ tht o " .
x, [Reaxj(2J Py “32,;]

"diffusion"



Even modes

D ur | au, uy o ?
_— | ——1 = - LT —_— | T T 2 N B
5t (57) = ¢ ujus) gt uiug e - ag [
J J J
production ( mode ) dissipation
interaction
2 1 3 w? ow?
— - Mgyt || e, " 1 \i
TS (7 X, (%) -» 45 T Yy 2 uiuiuj] : (2.7)
J J
"diffusion"

The usual Reynolds' time average has been used and we note that

the products E;Eg are uncorrelated but that the triple products

such as u{ujaug/axj are. These latter products are interpreted
as the work done by the stresses of the odd modes against the
appropriate rates of strain of the even modes and are responsible
for the net energy transfer between the odd and even.modes. Both
the even and odd modes have their respective production
mechanism, responsible for the extraction of energy from or a
return of energy to the mean shearing motion. The remaining
mechanisms include the rate of viscous dissipation of the various
scales of motion and Qf "diffusion" by viscosity and by the
fluctuating motions.

The discussion is so far general in that we have not

specified whether the problem is spatial or temporal. For the



spétial problem the Reynolds average is then the time average;
the periodicity is in time and the amplitudes (or "envelopes") of
the fluctuations grow and decay spatially. In the temporal
problem, the Reynolds average is spatial connected with the
spatial periodicity and the amplitudes of fluctuations evolve in
time. In the following we shall study the observed or observable
spatially developing shear 1layer for which the fluctuations have
periodicity in time. In this case the odd modes consist of
frequencies 8,38...,(2n - 1)g and the even modes consist of

2B ,4B8...,2n8, where n is an integer. Thus mode ug(ZB) would
correspond to, say, the fundamental component and ui(B) would
then be its subharmonie. In Section 3 we shall consider the
nonlinear interactions between modes 28 and B in a developing

shear layer, the simplest case of mode interactions.

3. TWO-MODE INTERACTIONS

In this section we shall apply the general framework
obtained previously to study the two mode interaction problem.
The even mode, u", would thus be interpreted as thaﬁlof the
fundémental mode with frequency 28; the odd mode, u', would be
its subharmonic of frequency 8. For the objective of obtaining
the "amplitude" or "envelope® equations, in terms of the
observable kinetic energy content across the shear layer for each
mode, we begin with (2.5) - (2.7) for a thin shear layer for
which the boundary layer Eype of approximations hold for the mean
quantities. The schematical representation of the shear layer is

shown in Figure 1. The simplified kinetic energy equations are



then integrated across the plane shear layer to give

0 o o
1d 2 42 2_42 . ' Vot ou 3
pa L v0toa + | velpe] - - ] i 8-,
(3.1)
1d 2. .2 c W
3 ax f—mu(u' +Ww'7)dz = f_m(-u'w ) 75 4z -
(3.2)
12.%(. f U(u"2+w"2)dz = j (_uuwn) % dz +

where x is the streamwise coordinate measured from the start of
the mixing layer, z is thé vertical coordinate measured from the
center of the mixing layer, u,wWw are the x,z fluctuation

velocities, U is the mean velocity with +« denoting the upper
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(say; slower) and lower free streams; hespectively; % is the
integral of mean flow viscous dissipation and the lower
case ¢' and ¢" represent the corresponding dissipation rates of
the fluctuations. Equations (3.1) - (3.3), where two-dimensional
wavy disturbances in a two-dimensional mean flow have been
assumed, form the basis for obtaining the evolution equations for
the measurable energy content of the disturbances across the
shear layer.

(a) Shape assumptions
Following earlier work (see, for instance, Stuart 1958; Liu
1981), the "closure" for the disturbances are obtained by
assuming the separable form of the product of an unknown finite
amplitude A (x) with a vertical distribution function given by

the local-linear stability theory,

u' ¢;e-18t c.c.
() - AI(X)[( -iBt) + )] (Subharmonic)
w' _ ~ia,d,e c.cC.

—= 11
u" ¢ée-2ist-162 c.c.
() - A2(X)[( ) 21aE-10 )+ ( JJ, (Fundamental)
w" —1a2¢2e 2 c.C.

where ¢i here denotes the eigenfunction of the local linear
theory and is a function of the rescaled vertical variable
n = z2/6(x); & (x) is a length scale of the mean flow yet to be

identified and ()' denotes differentiation with respect




11

to n; B = 2nf8(x)/U is the dimensionless local (Strouhal)
frequency, f is the physical frequency and U = (U_+ U_m)/z, the
local wave-numbers a are also scaled by &(x). The angle 62 is
the relative phase between the fundamental component (28) and its
subharmonic (B) and c.c. denotes the complex conjugate. The
velocities and lengths are considered to be made dimensionless

by U and 60
(so that §(0) = 1), and time by &,/U. These two-dimensional
disturbances have their vorticity axis perpendicular to the
direction of the free streams.

As far as the mean-flow is concerned we will assume a
hyperbolic tangent type profile, which has experimentally proven
to be very close to reality away from the splitter plate into the

developed mixing-layer region (Wygnanski et al. 1979; Fiedler

1980; Ho and Huang 1982),

where

is the velocity ratio of the shear layer. Since n = z/6(x), it
is now understood that §(x) is the half-maximum slope thickness
of the shear layer. This characterizes the mean motion and must
be jointly determined with the amplitudes Ai(x) of the finite
disturbances. '

Both shape functions ¢1 and ¢2 are taken to be governed

locally by the Rayleigh equation (see Liu and Merkine 1976)
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according to linear stability analysis with the appropriate

boundary conditions,

(U-c)(o"-a®p) - $u" = 0 ,

where ¢ is the phase velocity scaled by the mean velocity U of
the two free streams. This, of course, is an approximation since
the viscous terms have been dropped. We deal here with an
inflectional mean velocity profile which is dynamically unstable
and thus the inviscid equation suffices. The Rayleigh equation
Yields solutions that correspond to amplified disturbances up to
the point B = 1 of neutral stability. In the neighborhood of
this point and for values of B larger than 1 (corresponding to
damped disturbances) the equation becomes singular. In order to
obtain solutions in the locally damped region use is made of a
complex integration contour scheme first discussed by Lin (1955)
and successfully applied by Mack (1965) and Zaat (1958) for the
case of a boundary layer. The amplification rates -ai versus 8
are shown in Figure 2, providing the necessary "state" diagram
for initial disturbances in the subsequent nonlinear problem.

The eigenfunction ¢1 and ¢2 are normalized so aé to render
IA,‘(x)I2 and |A2(x)|2,to corresponding energy densities of each

mode of the finite disturbances such that the mode energy

contents across the shear layer are

+o

E,(x) = % f (u'2+w'2)dy

|A1(x)|26(x).

+0 ———
1 2 2
E2(X) = E f~m(uvt +Wt )dy

8,000 ] %6 (x).
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This is similar to Ho and Huané's (1982) E(f), except that their
energy content refers to the contribution by u alone. The
normalization of the local eigen-functions allows us to relate
the energy content to the amplitude.
(b) The nonlinear interaction problem

After substituting the shape assumptions into (3.1) - (3.3)
we then obtain three first~order nonlinear differential equations
describing the streamwise evolution of §,E, and E, (or 6,]A1|2
and |A2|2):

Mean flow

ds 1
Im rrl [IrsZ(S)EZ + Irs1(6)E1]/6 * % Id/é, (3.4)
Subharmonic
dE, 172,372 1 >
I1(6) rral Irs1(6)E1/6 - 121(6)3152 /68 - Id1(6)E1/6 , (3.5)
Fundamental
dE, 172,.3/2 1 2
12(5) el Irsz(G)EZ/S + 121(6)E1E2 /8 - Id2(6)52/6 . (3.6)

Equations (3.4) - (3.6) are subject to the initial conditions
E,(0) = Eqq » Ep(0) = Epg and 8(0) = 1; with 8(0) = B, chosen to
correspond to the physicaf frequency of the subharmoniec, the

specified U and the initial physical length scale of the mean

flow 60 . This length scale is identified with the initial half-
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maximum slope thickness. The advection integrals
are I ’Il(d) and 12(6). Inteérals involving wave disturbances
are dependent on §(x) through the dependence of the local
instability properties on the local frequency parameter B, except
for I, and 12 that are very nearly constant and have been
replaced in the equations by their average value. The production
integrals are Irs1(6) and Irsz(s) and the mode-energy exchange
integral is 121(6). The viscous dissipation integrals are
Iy » Id1(6) and Id2(6). The Reynolds number is Re = Edo/v. The
subscripts 1 and 2, as interpreted previously, denote the
subharmonic and fundamental, respectively. The detailed
definitions of these integrals are given in Appendix 1. Their
physical meaning is identifiable through (3.1) - (3.3). The mean
flow integrals Im and Id are constants for a fixed velocity-ratio
parameter R, whereas integrals involving the wavy disturbances
are tabulated functions of the dependent variable §(x) again for
a fixed R. It was sufficient to use the Rayleigh equation in
obtaining the characteristics of such integrals (see, for
instance, Liu and Merkine 1976), they are thus not éxplicit
functions of the Reynolds number.
(c) Mode-dependent interaction integrals

Prior to discussing the numerical applications, it would be
most instructive to show the behavior of the mode-related
integrals in (3.4) - (3.6). These are "universal" functions of
the local shear layer thickness &(x), or more precisely of the

local frequency parameter g = 2nf§(x)/U for a fixed frequency

f. The value of the velocity ratio parameter R is taken to be
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0.31. The mode viscous dissipation integral I4, is shown in
Figure 5 as function of B.  The mode advection integral In slowly
varies between 0.965 and 1 in the same interval of B and is thus

not shown. The mode-production integral I is shown in Figure

rsn
3. The integrals Irs1 and IrsZ are the subharmonic and
fundamental "productién" integrals, respectively. Their sign
controls the energy flow to or from the mean flow. When they are
positive the disturbance wave component is amplified by
extraecting energy from the mean flow and when negative the
disturbance is "damped" by returning energy to the mean motion.
The latter phenomenon is rather similar to hydrodynamic stability
interpretations and is now widely observed in developing free
shear flows. The interpretation of n = 1 and 2 is that the
frequency ratio 81: 62 be maintained as 1: 2. That is, if the
physical frequency of the fundamental (82) has the value f, = 2f
then the subharmonic componenf (Bl) has the value fy{ = f, both at
the same §(x). Thus, in Figure 3, if the fundamental mode is
initiated at 82=0.NM26 where I,..> is maximum, the su?harmonic
would be at B1=OT2213 where Irs1 is smaller and to the left of
the hump of the production-integral curve. In this case, as 6§(x)
increases the respective production integrals then traverse along
this curve with Irsz becoming negative first while Irsl passes
through its maximum value. .

The binary mode-interaction integral 121 is shown in Figure
4, with the relative phase'angle 8 as a parameter. We have

chosen to interpret I,; as a function of B1 in Figure U4 (while

keeping track of 8, , for the same §(x)). The integral I,
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which represents the interaction between the fundamental and the
subharmonic, controls the energy flow between the two modes via
its magnitude and sign. The subharmonic draws energy from the
fundamental when I,; < O and loses energy to the fundamental when
121 > 0. In turn tﬁe sign of this integral is controlled by the
phase angle betweén the two modes 8 and is of great significance
to the role of the binary mode-interaction mechanism. In

effect 8 is the governing parameter that dictates whether the
subharmonic grows at higher (Xelly 1967) or lower amplification
rates than those dictated by linear stability analysis.

The present formulation is intended to solve the streamwise
development problem from the use of the local linear theory in
the evaluation of the interaction integrals. It is, however,
crucial to reconcile any similarities with the pioneering work of
Kelly (1967) for a parallel flow and weak nonlinearities. 1In the
context of the present spatial problem, Kelly's analysis falls in
the local region where the fundamental component is most
amplified.~ The most amplified mode occurs at 82 = O.QUZ6 in
Figure 2 and thus 81 = 0.2213, where the subharmonic is
amplifying due to the mean flow. In Figure 4, where the
horizontal axis is 61 » @ vertical line drawn fronm B] = 0.2213
cuts across values of the binary mode-~interaction integral for
various relative phase angle 9. For this situation,
0° 5 8 < 60° give rise to I,4 < 0, implying energy transfer from
the fundamental to the subharmonic. Thus the mean flow
amplification of the subharmonic component is augmented by the

fundamental within this range of phase angles. The opposite is




17

true as & » 7w as shown in Figgre 4 for 81=0.2213 . This is
consistent with Kelly (1967). We again émphasize that the
temporal, parallel flow problem that Kelly discussed occurs
"momentarily" at one streamwise location corresponding

to Baa OTM426 and B1=0.2213 in the context of the present

developing shear layer problem. In our problem, the development

of the amplitudes is a strong function of the initial and
spectral conditions, dictated by the nonlinear interactions
according to (3.4) - (3.6). The realistic outcome is not

necessarily anticipated from considerations based on parallel

flow.

y, RESULTS AND DISCUSSION

The theoretical formulation, presented in the previous
sections of this paper, indicates that the initial conditions
(BO » Esgo ElO) along with the phase angle 8 are parameters that
play a very significant role in the development of the two
interacting wave modes and, subsequently, the development of the
shear layer. The phase angle, 6, between the fundamental wave
component and its subharmonic, has been shown to be the sole
parameter responsible for the nature of the interaction between
these two wave-modes. The ini§1a1 dimensionless frequency BO has
two significant effects. It defines, on one hand, the initial
amplification rate and the downstream amplification "history" of
each wave from the interaétion with the mean flow and on the
other, the nature of the initial interaction between the two

waves. The strength of the interaction between the waves as well
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as that between the waves and the mean flow is also controlled by
the initial energy densities E20 and E10 of the fundamental and
subharmonic, respectively, as pointed éut by Kelly (1967).
Finally the Reynolds number Reo influences the intensity of
viscous dissipation for all the components of the flow. This
parameter is of minor importance in this formulation where the
local linear solution is independent of the Reynolds number, and
viscous dissipation is weak compared to the other mechanisms
present.

We have solved the nonlinear interaction problem, formulated
by equations (3.4) - (3.6), for different values of the
controlling parameters, in order to bring forth their effect on
the development of the shear layer and the interactions between
the three components of the flow. These results are presented
first. We then present results for conditions based on the
experiment of Ho & Huang (1982) for purposes of comparing our
theoretical results with their measurements.

— (a) Effect of the phase angle @

To better illustrate the role of the phase angle 8 on the
development of the shear layer and the energy content of the
interacting modes, we have chosen to examine two cases. For
fixed initial energy densities E,5 = 0.68 10™% ana Eig =
0.12 107" and fixed Reynolds number Rey, = 71 we have solved the
interaction.problem for low and high initial frequency
parameters. We have carriéd out the calculations for various
representative values of the phase angle. The initial frequency

parameter characterizing each case is, by our choice, that of the
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subharmonic wave.
(i) Low initial frequency parameter

The streamwise development of the energy levels of the
fundamental (E,) and subharmonic (E{) waves, scaled by the
corresponding initial falues, are presented in Figure 6a for
phase angles of 0° and 180°, as well as for the case where the
direct wave interaction mechanism is artificially neglected. In
the latter case, indirect coupling between the waves is through
their nonlinear interactions with the mean flow. The initial
subharmonic frequency parameter is taken to be BO = 0.075, giving
a fundamental frequency of 280 = 0.15. The two modes start at a
frequency parameter much smaller than the most amplified case in
terms of linear stability theory (Figure 2). Naturally the
fundamental experiences maximum amplification first while the
subharmonic grows at a lower rate as it can be seen from Figure
6a.

In the early stage of the development of the two modes
when 6 = 0° the subharmonic draws energy from the fundamental
component because the two-mode interaction integral 121 is
negative. Therefore the subharmonic is growing, in that region,
at higher amplification rates than those predicted by linear
stability analysis from its interaction with the mean flow
only. This is evident from the comparison with the decoupled
case in the region O<x/60<55, as presented in Figure 6a. This
situation persists until tﬂe fundamental goes through maximum
amplification (for 82§0.6 as indicated in the discussion of the

two-mode interaction integral) and is in agreement with the
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conclusion of Kelly (1967). 1In the same region, for the case
of 8 = ?80°, the interaction integral I,; is positive and the
subharmonic loses energy to the fundamenﬁal component, thus
growing at a lower amplification rate, as shown in Figure 6a.
The comparison with the decoupled case, in this region, shows
that the wave interaction has a greater effect on the development
of the subharmonic because its interaction with the mean flow is
much weaker than that of the fundamental. The extraction of
energy from the mean flow is the dominant energy supply for the
fundamental component and is responsible for the peak in Er. In
the strongly nonlinear region, for values of the fundamental
frequency parameter 62 higher than 0.6 (x/60>55 in Figure 6a) the
sign of the two-mode interaction term, I21E1E21/2/63/2 , in
equations (3.5) and (3.6) is reversed and therefore the
subharmonic loses energy to the fundamental component when 8§ =
0°. Because of this interaction the subharmonic wave grows at a
lower rate and the fundamental persists downstream even when it
starts-10sing energy to the mean flow. This mechanism accounts
for the lower and later peak of the subharmonic eneréy E1
compared to the decoupled case.

In the case of 6 = 180°, the opposite situation to the
8 = 0° case takes place in the strongly nonlinear region. The
subharmonic drawing energy from the fundamental grows faster and
to a higher peak, while the fundamental is quickly damped by the
combined loss of energy to the subharmonic component and mean
flow. The wave interaction is the decisive factor for the

survival of the fundamental far downstream, since there it is
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being damped by returning energy to the mean flow, where Ir's2 <0

(Figure 3). The subharmonic is affected by the wave
interaction to a relatively small extent. This becomes obvious
from the comparison with the decoupled case in Figure 6a.

From (3.4), it is obvious that the mean flow will spread as
long as energy is lost from the mean flow, whether it is due to
viscous dissipation or energy transfer to the fluctuations. The
resulting growth of the mean flow is shown in Figure 6b. The
initial rapid growth is governed by the strong interaction of the
amplified fundamental disturbance with the mean flow and remains
unaffected by the interaction bétween the two disturbances which
in this region is very weak. The first plateau is due to the
peak in the fundamental, the second due to the peaking of the
subharmonicec. These plateaus are associated with the observed
phenomenon of negative energy production from the mean (see, for
instance, Fiedler, Dziomba, Mensing & Rosgen 1981) that occurs
when the sign of the Reynolds stress ~§5 of a particular wave
mode of coherent structure is opposite to that of the mean flow

rate of strain .and the production integral I < 0, thus

3y
39z rsn
tending to halt the shear layer growth. After the first plateau
the growth of the mean flow is again rapid because of the
amplification of the subharmonic from extraction of energy from
the mean flow. However, the interaction of the two modes seems
- to play some role on this development. In the case of 6 = 180°
the growth of the mean is-somewhat steaper because of the extra

energy that is channeled into the subharmonic wave from the

fundamental component. The opposite is true in the case
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where 6 = 0° and the plateau that results from the saturation of
the subharmonic is somewhat lower. The shear layer thickness due
to the subharmonic is very nearly double that due to the
fundamental in Figure 6b. That is, the ratio of the two plateau
is nearly two. However, this is somewhat dependent upon the
initial conditions, as we will show later, and ought not to be a
general rule.

(ii) High initial frequency parameter

The streamwise development of the energy levels of the
fundamental (E2) and subharmoniec (E,) waves, scaled by the
corresponding initial values, are presented in Figure Ta for
phase angles of 0°, 80° and 180°, as well as for the decoupled
case. The initial energy densities and Reynolds number are the
same as in the case of low initial frequency parameter while the
value of the latter is taken to be Bo = 0.18 for the subharmonic
and 260 = 0.36 for the fundamental compongnt. The latter is
slightly less than the initially most amplified Strouhal
frequgaéy.

Both disturbances experience a higher initial émplification
than in the previous case because their initial frequency
parameters are closer to the one corresponding to the most
amplified disturbance. A consequence of this fact is that the
two-wave interaction mechanism is much weaker than the
interaction of both wave components with the mean. Subsequently
the initial development of E1 and E2 is essentially unaffected by

the modal interaction as shown in Figure T7a. The two-wave

interaction becomes important in the strongly nonlinear region,
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after the fundamental has reached its peak, in the same manner as
in the previous case of low initial frequency parameter. The
case of 8 = 80° is characterized by'a weaker modal interaction
than that of 6 = 0°, as one can expect from the magnitude of the
respective interaction integrals (Figure 4). The energy flow is
from the subharmonic to the fundamental component for both of
these phase angles, in the strongly nonlinear region. The
resulting growth of the mean flow, which is shown in Figure 7b,
indicates the same general trends observed for the low initial
frequency parameter case.

The two-wave interaction mechanism has a dual effect on the
modal development. It affects the amplification rate of the
subharmonic directly by providing energy from the fundamental and
indirectly by increasing the energy gained from the mean, since
this gain is proportional to E1. These two effects are of course
coupled. The direct two~wave interaction mechanism is
172 63/2

121E1E2_ / , and is shown in Figure

Te. The -indirect wave-interaction effect can be realized by

represented by the ternm,

comparing the mean-subharmonic interaction term, IrsIE1/6’ for
the cases of & = 0° and 6 = 180° as presented in Figﬁré 7d. It
also appears from the observation of Figures 7e¢ and 7d that the
indirect effect of the two-wave interaction mechanism is more
significant, because the energy exchange with the mean is the
controlling factor in the'growth of the subharmonic in this
particular case.

(b) Effect of the initial frequency parameter By

The streamwise development of the energy levels of the two
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wave-modes are shown in Figure 8a for three different initial
frequency parameters and for a phase angle 8 = 0°. The initial
frequency parameter, as pointed out earlier, defines the initial
amplification rate of the disturbances from their interaction

with the mean flow; it also controls the overall amount of energy

that each individual disturbance will extract from the mean flow
throughout its development. 1In the case of BO = 0.30 the
disturbance characterized by 2 BO = 0.6 starts out at an
amplification rate lower than that of {ts subharmonic and past
its maximum amplification rate as it can be seen from the mean
flow interaction integral in Figure 3. Subsequently the wave
characterized by 80 = 0.3 dominates throughout the development of
the flow, as shown in Figure 8a and is actually the fundamental
disturbance. The wave characterized by 280 is its first harmonic
and despite the fact that the two-wave interaction mechanism acts
in its favour (86 = 0°), its role in the development of the flow
is negligible. This is also apparent from the development of the
mean flow for this case shown in Figure 8b, where the.single
plateau is attributed to the saturatidn of E1 only.

In general decrease of the initial frequency parameter will
inerease the downstream amplification "history" of each wave.
The peaks in E1 and E2 are higher and occur at a later stage as
the initial fréquency parameter is decreased, because of the
implied increase of the overall energy extracted from the mean.
The growth of the mean flow is more pronounced for lower values
of the initial frequency parameter due to the same physical

effect (Figure 8b).
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The discussion so far has been limited to the “direct"
effect of the initial frequency parameter on the development of
the modal energy densities which is a consequence of the
interaction with the mean flow. The effect of BO on the modal
interaction mechanism is apparent from the comparison between the
results presented in Figures 6a and 7a for low and high
80 respectively and for the case, say, where 6 = 0°, For
high BO » as pointed out earlier, the early and favourable to the
subharmonic disturbance interaction is practically absent unlike
the case where the initial frequency parameter is low. This
effect of Bo on the modal interaction mechanism is, however,
negligible compared to that of the phase angle. According to the
above observations, we can conclude that the effect of the
initial frequency parameter is essentially confined to the one
influencing the interaction between the waves and the mean flow.

(c) Effect of the initial energy density of the

subharmoniec.

The- results of our calculations for three different initial
energy densities of the subharmonic are given in Figures 9a, 9b,
9¢ and 9d with all other initial parameters being fixed and a

phase angle 8 = 0°. The peaks in E]/E are proportional to

10

E10 ; therefore, the subharmoniec reéches the same approximately
peak level irrespectively of its initial density. The
interaction of the subharmonic with the mean becomes maximum
earlier with increasing E1O'as can be seen from Figure 9c, where
Wwe show the development of the wave-mean interaction term. This

accounts for the earlier peaking of E1 and the subsequent earlier
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second plateau of the mean flow development shown in Figure 9b.
The level of this plateau is independent of the initial density
of the subharmonic as is the peak level of E, . The two-wave
interaction term, presented in Figure 9d, becomes strong earlier
with increasing E10 . For this case of 8 = 0° the two-wave
interaction in the early stages of the modal development is in
favor of the subharmonic, as discussed in an earlier section.
These two observations explain the weakening of the interaction
of the fundamental with the mean and the lower peak of E2 with
increasing E10 . This is also in agreement with Kelly's
mechanism and results in a less prominent first plateau in the
growth of the mean as we increase the initial subharmonic
density.

(d) Effect of the initial energy density of the

fundamental.

The results of our calculations for three different initial
energy densities of the fundamental are shown in Figures 10a,
10b, 10c and 10d. The peak value of the fundamental energy
level, 82 , is shown to be independent of its initial energy

density since E2/E20 is proportional to E in Figure 10a. The

20

peak value of the subharmonic also remains unaffected. Therefore

the plateau levels in the growth of the mean presented in Figure
10b are independent of E20 . The increase of the initial energy
density of the fundamental intensifies the interaction with the
mean (Figure 10c¢) in its aﬁplification region and therefore
causes a faster growth of the shear-layer as shown in Figure

10b. The interaction term between the subharmonic and the mean
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flow and the two-mode interaction term are inversely proportional

to § and 63/2

(see equations (3.5 and (3.6). Therefore, the
faster growth of the mean accounts for the shift in the peaks of
these two terms downstream (Figures 10c and 10d), the subsequent

weakening of the subharmonic and faster growth of the mean after

the first plateau.

(e) Effect of the initial Reynolds Number

The development of the energy levels of the fundamental and
subharmonic disturbances, scaled by the corresponding initial
values, are given in Figure jja for Reo = 35.5 and 71. It can be
seen that viscous dissipation has a very weak effect on the
development of the modes. The fundamental and subharmonic peaks
occur earlier and at a higher level with increasing Reo. This of
course was expected since viscous effects are weaker with
increasing Reynolds number. The development of the mean flow is
shown in Figure 11b. The growth of the mean flow is faster for
high Regﬁin the initial stages before the first plateau and is
related to the growth of the fundamental. One would.expeet a
slower growth of the mean when the Reynolds number is high,
because of the viscous term (%E Id/6) in equation (3.4).
However, this term is negligible compared to the wave production
terms; thus the development of the mean is controlled brimarily
by the interaction with the two disturbances. We should point
out at this point that the'use of the inviscid local solutions
for the disturbances renders the Interaction integrals

independent of the Reynolds number; hence viscous effects have
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not been accounted for in full.

(f) Comparisons with experimental results of
Ho and Huang (1982)

The results of our calculation presented in this section are
based on the experimental conditions corresponding to the
measurements performed by Ho and Huang (1982). The initial
subharmonic frequency parameter is taken to be Bo = 0.26, giving
a fundamental 280 = 0.52 which is very nearly at the maximum
amplification rate according to the linear theory. These values
were based on the initial maximum slope thickness 60 at a
location 1.43 em downstream of the splitter plate, where the
initial wake type profile has developed into a hyperbolic tangent
shear layer profile, as reported by Ho and Huang (1982). The
origin in the calculation, x = 0, is taken to be at the
experimental 1.43 cm location. The relative phase between the
fundamental and the subharmonic is left arbitrary (and therefore
unknown) in the experiment. We carried out the calculations for
three different phase angles, namely 6 = 0°, 80° ana 180°,

The streamwise development of the energy levels of the
streamwise component of the fundamental (Eu2) and subharmonic
(Eu1) is qualitapively in very good agreement with the experiment
as one can see from Figure 12a, particularly for the 6 = 80°
case. The location of the peaks in Eu1 and Eu, are well in
agreement with the experiﬁent although the peak values themselves
are underestimated. The growth of the shear layer shown in

Figure 12b also compares well with the experiments (Ho & Huang
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1982) both.qualipatively and qgantitatively, in the region where
the two wave modes are developing. The plateaus (attributed to
the energy flow from the mean to the disturbances according to
our previous discussion) as well as the approximate doubling of
the thickness are evident in both the experiment and our

results. In Ho and Huang's (1982) experiments, the shear layer
continues to spread after the plateau regions (Figure 12b); it is
most likely that transition has taken place in that the existing
fine-grained turbulence having been sufficiently strained by the
coherent structures is now contributing towards the mean flow
spreading rate via the fine~grained turbulence Reynolds stress
mechanism. This mechanism is not present in our formulation
since we have not taken under account the fine grained
turbulence. Therefore this latter spread of the mean flow cannot
be predicted by our calculations.

Apart from the fine grained turbulence, there are many other
less dominant disturbance wave modes present in the experiments
of Ho and Huang (1982) to which the shear layer is sensitive.
This fact together with the arbitrariness of the phase angle in
the experiment leads to the conclusion that the quantitative
details of the shear layer are not expected to be described by
the idealized two-mode problem in the absence of weak fine-
grained turbulence and other (not necessarily weak) modes.
However, the problem solved here brings out the dominant physical
mechanisms in the growth aﬁd decay of the overlapping fundamental
and subharmonic disturbances, as well as the important effect of

the initial conditions and relative phase angle.
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APPENDIX 1. TWO MODE INTERACTION INTEGRALS

0 ™
Im = - 5 [f (1-Rtanhn){ (1-Rtanhn)® - (1+R)%2an f (1-Rtanhn){ (1-Rtanhn)? -

- (14R)2Jdn] = 2R2(3/2-2n2)

I,(6) =1 -R fj:tanhn{|¢{|2 + Ia1¢1l2}dn

I,(6) =1-~R ft:tanhn{|¢é|2 + |a2¢2|2}dn

ILgt = 2Rfi:sech2nlm(al¢l$1)dn

I, = 2th:sech2nlm(a2¢2$é)dn

I, - 2ji:Im{eie{32{$é(¢'f+af¢1) *2;3,0,0,011 + a,4,0137} Jdn
Id ;:fszzsechundn = E%i

1, =2la,l%+ 2f ijen|? + |a1¢{]2}dn

I, = 2|a2]2 + 2f::{1¢5|2 + |a2¢élz}dn

where Im denotes the imaginary part and ¢ denotes the complex conjugate of ¢.
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FIGURE CAPTIONS

The mixing layer schematic.
Amplification rates ;ai versus frequency parameter 8.

Mode-production integral Irsn as function of frequence parameter

B.

Binary mode-interaction integral I,4 as function of frequency

parameter B with relative phase angle & as a parameter.

Mode viscous disspation integral Idn as function of frequency

parameter 8.

Development of modal energy content for low initial frequency
H

parameter (8 = 0°, 180° and decoupled case; Ejg = 0.12 x 1074

~Y _ _
Eyg = 0.68 x 10 7, Bo = 0.075, Rey = 71).

Mean flow growth for low initial frequency parameter (8=0°, 180°
and decoupled case; E;g = 0.12 x 10‘", Esg = 0.68 x 10‘“,

B, = 0.075, Rey = 1),

Development of modal energy content for high initial frequency

parameter (8=0°, 80°, 180° and decoupled case; Eig =

4

0.12 x 1074, By = 0.68 x 1074, 8 = 0.18, ey = 71).



Figure 7b

Figure Tec

Figure T7d

Figure 8a

Figure 8b ~

Figure 9a
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Mean flow growth for high initial frequency parameter
(6=0°, 80°, 180° and decoupled case; Ejg = 0.12 x 10’“,

Epp = 0.68 x 107, 8_ = 0.18, Rey = 71).

Mode—-production term development for high initial frequency
parameter (8 = 0°, 180°; Ejg = 0.12 x 10‘”, Exg = 0.68 x 10-4

Bo = 0.18, Re, = 71).

Binary mode-interaction term development for high initial

frequency parameter (8 4

0°, 180°; E;q = 0.12 x 107", Epy = 0.68

-4
X 10 , Bo = 0,18, Reo 71).
Development of modal energy content: effect of initial
frequency parameter (Bo = 0.075, 0.18, 0.3; E10 = 0.12 x 10““,

Eyp = 0.68 x 1074, 8 = 0°, Rey = T1).

Mean flow growth: effect of initial frequency parameter (Bo =
0.075, 0.18, 0.3; E;p = 0.12 x 1074, Epy = 0.68 x 1077,

6 = 0°, Re, = 71).

Development of modal energy content: effect of initial
subharmonic energy density. (E;g = 1.2, 0.4, 0.12 x 1074,

Eng = 0.68 x 107%, B, = 0.075, 8 = 0°, Rey = 71).
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9b

9¢

9d

10a

10b

10c

10d
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Mean flow growth: effect of initial subharmonic energy density
- ol -y
(E10 = lc2, Oo)", 0.12 X 10 H EZO = 0.68 X 10 y BO = 0-075’

e = 0°, Reo = T1).

Mode-production term development: effect of initial subharmonic

4

’

energy density (Ejq = 1.2, 0.4, 0.12 x 10™%; £y = 0.68 x 10”

B, = 0.075, 6 = 0°, Re, = T1).

Binary mode-interaction term development: effect of subharmonic
energy density (o = 1.2, 0.4, 0.12 x 107%; E,y = 0.68 x 107,

B, = 0.075, 8 = 0°, Rey = T71).

Development of modal energy content: effect of initial
fundamental energy density (E20 = 13.6, 6.8, 0.6 x10-5; Ejg =

-} : _ B
0.12 x 10 7, Bo = 0.075, 8 = 0°, Re, = 71).

Mean flow growth: effect of initial fundamental energy density
(E20 = 13-6’ 6.8, Oo6 X 10-5; E10 = 0.12 x 10")", Bo = 0.075'

e = OO; Reo = 71).

Mode-production term development: effect of initial fundamental
energy density (E,5 = 13.6, 6.8, 0.6 x 1072; Ejg = 0.12 x 10’“,
B, = 0.075, & = 0°, Re, = T1).

Binary mode-interéction term development: effect of initial

fundamental energy density (E,y = 13.6, 6.8, 0.6 x 10723 E1o =

0.12 x 107", g_ = 0.075, 6 = 0°, Rey = 71).



Figure 1lla

Figure 11b

Figure 12a

Figure 12b
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Development of modal energy content: effect of initial Reynolds
= ) - -4 _ -4

No. (Re = 71, 35.5; Eig = 0.12x 10 7, Epg = 0.68 x 10 7, BO =

0.075, 6 = 0°).

Mean flow growth: effect of initial Reynolds No. (Re = 71,

. = -4 ~4 = = Q°
35-5’ E10 = 0-12 X 10 ’ EZO = 0.68 X 10 » BO = O-O75. e = O )-

Development of modal energy content: Comparison with Ho and

Huang (1982) experiment. (8 0°, 80° and 180°; Euqg = 0.16 x

-

1074, Bupy = 0.48 x 1073, 8_

0.26, Rey = 81).

Mean flow growth: Comparison with Ho and Huang (1982)
experiment. (6 = 0°, 80° amd 180°: Eujg = 0.16 x 10‘“, Eusg =

0.48 x 1073, B, = 0.26, Rey = 81).
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